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1 Introduction
Practical work in statistics—more often than not— involves coding. As a result,
both statisticians and data scientists not only need to write code but are expected
to write good code. By “good code” we mean code that, needless to say, makes
the computer perform the operations that we intended but also code that is easily
understood by humans—code that other people can reason about, edit, and
reuse if necessary. If we adopt this view, our goal should be to write statistical
programs that strike a balance between effectiveness and readability, an aim
that is not always easy to achieve given the lack of formal training in software
development of most practitioners, the sensible inclination to prioritize deadlines
over potential future readers, and the subjective and social nature of the problem
itself. In this document, guided by our own experience, we discuss what we
believe are some of the core challenges that data scientists and statisticians
face when we need to share our code and offer suggestions of possible tools and
workflows.

We make these recommendations with an eye towards reproducibility. The
concept is key in modern scientific research and has been at the center of the
debate around the credibility revolution in Academia, although it affects applied
researchers, too (see, for instance, Stodden, Seiler, and Ma 2018). At the end of
the day, the extent to which consistent results can be obtained in repetitions
of an analytical task is a minimum standard for judging a claim (Peng 2011)
which is a way of saying that reproducibility is a warranty that we extend on
the output of our statistical operations. When we share our results with others
we are making a implicit commitment that, if asked to, we would be able to
reproduce the same output starting from the same input and that others can
verify the process. With that idea in mind, we should consider that the code
that produces the results—even more than the results themselves—is the actual
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product of research activity (McElreath 2018, 443). Our goal in preparing this
document is to make the process of writing reproducible code easier so that
our colleagues, team mates, clients, and the scientific community at large can
use our results and methods (Barnes 2010; Martinez et al. 2018). In this, we
acknowledge that practical reproducibility, by which we mean “enabling others
to reproduce results without difficulty” (Project Jupyter et al. 2018, 113, the
emphasis is ours), is still the main barrier to the adoption of a reproducibility
framework.

We have divided our recommendations in two parts. In the first one, we talk
about good coding practices for statistics and data science. We make suggestions
that are fundamental enough to cover all types of statistical products. In the
case of analysis and modeling, the final output may be a report that perhaps will
need to be revisited as data changes or as we try different modeling approaches.
In this case, goodf code is code that makes it possible for other users—and
ourselves in the future—, not only to verify what has been done but also make
contributions. When we produce survey estimates, good code means that clients
can inspect and reproduce which will imply also the ability to run our code
themselves. When the goal is to produce statistical tools, we are squarely in the
terrain of software development and our standards should align with those that
are common among software engineers. In all these cases, our code will benefit
from following some of the standard practices we list.

The second part of the document focuses on reproducibility and the tools that we
can use to make our code more stable, portable, and easier to share (Boettiger
2015). Here our target is to facilitate a workflow that allows us to provide our
users with a way to replicate the computation environment (Tatman, VanderPlas,
and Dane 2018). In this discussion, it is important to keep in mind that there
is more than one way to make our code reproducible and that the standard of
reproducibility we choose to apply should be a negotiation between us and our
users. To put it in a different way, the recommendations in this second section
are not intended to be taken as a monolith but rather as suggestions that can
be combined modularly depending on the specific needs of the project.

In both parts, our recommendations emphasize tools from the ecosystem of the
R language. However, we believe that the overarching ideas apply more generally
to other open source tools.

A final note is in order. While we should certainly use whatever tool can help us,
it is our view that reproducibility is first and foremost a problem of workflow and
process—of how we use the tools, of how we structure and develop a project, of
adopting habits that push us to think about others when writing code. From this
point of view, we are persuaded that reproducibility is not a burden but rather
a beneficial concept that can help us increase our productivity and confidence in
what we do (Sandve et al. 2013) by adopting a mode of thinking that prompt
us to put ourselves in the shoes of others.
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1.1 Good coding practices improve reproducibility
It does not matter if we are writing a one-off analysis or a module that will be
used by others, we can benefit from having good tools that help us simplify the
operations that are involved in making our code and environment reproducible
by others, as we will see in the next section. However, the challenge we face
is often not only technical but rather one of technique. What separates good
code from bad code is, to a large extent, how the information is organized and
conveyed. Our position is that, given a choice among alternative ways of writing
a program, we should pursue the one that others will find easier to interpret.
Thus, the idea of “good” code will revolve around an idea of style, which depends
on our individual skills and creativity, but also on an opportunistic adherence
to conventions, which we see here as an agreement between all users about how
to coordinate in situations that admit several solutions. In that regard, good
coding practices are those that aim at reducing the cognitive effort required to
understand the intention of the code and how it operates (Wilson et al. 2014).

1.1.1 Use idioms and conventions

A consistent coding style is like orthography or punctuation: it makes code easier
for others to read. Simple things like conventions on how to name functions or
objects, what the maximum length of a line should be, or where to align the
brackets that enclose the body of a function go a long way to make our code
look like familiar territory to others. If possible, you should favor idiomatic
alternatives (see, for instance, Johnson 2019) to consistently adopt a style guide,
such as the Tidyverse Style Guide. To make the process easier, you should use
code checkers such as lintr that help you stay on track with the guide and to
spot potential errors.

1.1.2 Avoid assumptions about the execution environment

It is convenient to work in a project assuming that it will be executed by others
in a fresh session which means that they will not have access to artifacts or
customizations from your personal environment (Blischak et al. 2016). At the
same time, be mindful of the changes that your code will make in someone
else’s session (Bryan 2017): it is tempting to force the user to comply with our
expectations about what resources are available and where but there are often
better solutions. For instance, if you want to make sure that the user has a
package installed, instead of stating install.packages() in your script, provide
them with an renv file. Similarly, rather than setting a working directory in
your script, which is a way of making potentially unrealistic assumptions about
the folder structure of other people’s machines (Wickham and Grolemund 2017),
use paths relative to the home of the project. Finally, avoid making unnecessary
changes to the environment of the user by calling rm(list=ls()). It is hard to
predict what you will be unnecessarily removing from your machine or from the
user’s machine.
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1.1.3 Structure your code in predictable way

Structure your code in a standard and predictable way so that it is easy for
any reader to know where to find things. For instance, have separate folders
for code, data, or images with easily recognizable and standard names and split
your code at different logical points as opposed to sourcing everything from a
single script. Does your script clean data, run analysis, and create figures? As a
general rule, we think it is cleaner and easier to understand to have separate
scripts performing specific tasks. The same idea applies to functionality. Ensure
that your code abstracts and automates functionality in a way in which each
piece does one thing well and one thing only (Salus 1994). Does your function
pull data from a data base and reshapes it? Would it be easier to understand if
you split it so that data extraction and data transformation are two separate
(even if connected) steps?

1.1.4 Document everything

Documentation is the entry point to our code for a new person but also for our
future selves. Make sure that each logical unit (scripts, functions, packages)
includes a short description of what they do, leaving a trace of your thinking
process if some decisions are not obvious from the code itself. Better than
describing what the code does, document why the code does it in a particular
way. Keep in mind that whatever seems trivial to you now may not still be
obvious one year from now.

In packages, document classes, methods, and functions using documentation
generators like roxygen2 making sure you are explicit about what comes in and
what comes out. In the case of scripts, if you have a reason to not maintain your
code under version control (see next section), include the author and date of the
current version and archive older versions with a consistent and searchable file
name.

We recommend using README files to help your reader understand what your
code does, how it works, and what to expect from it. Think about a new user
and give them a high level explanation about what the code does, how one uses
it or the expectations about the resources that are available. We have found
that the most useful README files are explicit, use examples, and a walk-through
to help users understand how to use the code. Because credentials and personal
information should never be hardcoded (Csefalvay 2018), a README file is also
the best place to document how passwords are expected to be passed to the code
whenever they are needed.

1.1.5 Be defensive against errors

Be stingy with dependencies. If you only need one function from a package,
avoid importing everything from it. Similarly, if what you need to do can easily
be expressed with the base distribution of R, do not import additional packages,
especially if they are not commonly used or regularly maintained.
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Errors creep in during manual operations like copying data or results from one
tool to another. It is too easy to copy the wrong input or to forget to update a
report with the most recent numbers. If your code is part of an analysis that
is intended to be read with comments, tables, or figures, use a notebook like R
Markdown.

Tested code is more reliable code. In thinking about testing, we should consider
whether each individual component is fit for use (unit testing), whether different
components work correctly together (integration testing), and whether the system
as a whole behaves as expected (system testing). Each level follows a similar
logic: for every piece of code we write, we commonly are able to anticipate what
must happen for a given input. For instance, if we write a function to perform
addition and the inputs are 1 and 1, we can manually work out what a valid
implementation must return (unit testing). In some other cases, however, all we
can do is express high level expectations. If we implement a function to make
extractions out of a uniform distribution in [0, 1], we cannot possible predict the
exact return for each call but we will know that the implementation is wrong if
it is not a float in the [0, 1] interval. Making these expectations as explicit as
possible and incorporating them into the code using testthat or assertr as
part of the design can allow others to verify that the code behaves as intended
(Wilson et al. 2014).

A complete strategy to ensure that the code meets the requirements and that it
correctly does what we want often requires more than the adoption of good indi-
vidual workflows and tools. Instead, it often depends on incorporating a formal
process for development that favors transparency, introduces periodic reviews by
peers, and builds upon tests as the foundation of the development strategy. The
different approaches to manage the life-cycle of the code—including assessment,
testing, and quality assurance—are outside the scope of this document but we
encourage the reader to consult a high-level overview like Bourque and Fairley
(2014).

2 A toolkit for reproducibility
Reproducibility speaks to the computational dimension of statistical research
and practice. In the context of statistics and data science, reproducibility means
that our code—a map from data to estimates or predictions—should not depend
on the specific computational environment in which data processing and data
analysis originally took place.

The challenge that we need to address is the following. The packages we use
undergo changes through different iterations. Sometimes these changes are not
backwards compatible which means that the same snippet of code can change
its meaning in the future because we, as package developers, may alter what a
function does in order to better suit our own needs. In addition, packages have
dependencies themselves which may introduce changes in our code indirectly.
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Without being a call to remove all dependencies, it is helpful to see things from
the perspective that “[d]ependencies are invitations for other people to break
your package” (Eddelbuettel 2018). Thus, our first goal is to ensure that we
will be able to replicate in the future the exact network of dependencies that we
used today to run our analysis.

The same concept can be rolled up to the level of the statistical environment itself.
R changes and sometimes the changes affect the original intention of our code. The
R environment may introduce effects through a subtle mechanism: computations
can be affected by how R was installed—some routines may not work or work
unexpectedly depending on system-level dependencies. Consequently, we will
want to ensure that our user is aware that our code is tied to a particular version
of R and provide them with a way of running the code under conditions as similar
as possible as the ones we originally used.

Finally, even with the same computational environment, results may be different
depending on the version of the code and the order in which it was executed.
Say that, for instance, our project uses data that is processed through three
scripts A, B, and C in sequence. Is it possible that running B before A will change
the output that C needs? How can we make sure that the user knows what needs
to be run and in which order to reproduce our results? What is more, knowing
that those three scripts can change over time, how can we make sure that the
user is indeed looking at the correct version of the code and data?

The recommendations below address these issues. Although they favor specific
tools, it is important to be aware that the toolkit that is available to us is
constantly evolving and that, as a result, the best tools are likely to change over
time. Keeping an eye on the literature and on what our scientific community is
doing is thus as important as mastering specific tools. Also, common sense is
the best guiding principle: not all projects face the same demands and, rather
than blindly applying the same solution to all possible scenarios, we recommend
being thoughtful about the combination of tools that best serve the project at
hand.

2.1 Embrace version control
Our code evolves throughout the life of the project. It is expected—and even
trivial to say—that specific results are tied to specific versions of the code and
the data. Being able to go back and forth between these different versions helps
us declare the provenance of a given result. Have we changed the way a variable
is recoded? Did we use a different model? Was the data edited to correct an
error? Having the code in version control system such as git will help us keep
track of different versions of the code without having to rely on ad hoc solutions
like renaming files with dates or the author’s initials. Suites like Github or
GitLab offer integration of version control systems with other tools that can be
used for issue tracking, which we have found useful to simplify the process of
discussion and documentation. While not as standard yet, we want to mention
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that are tools available to maintain the data itself under version control such as
dvc even although, with a goal of data sharing in mind, the challenge is more
likely on the side of standards (Tierney and Ram 2020).

2.2 Document code dependencies
We recommend the use of a dependency manager to ensure that you document
the exact versions of the packages that were installed when you ran the code for
the last time. For R, renv is a good choice. renv will create a fresh library for
your project and then incrementally add the packages that you need to a .lock
file (a JSON file) that lists not only the version that you installed but also the
source from which it was installed (Did you install version 2.2.1 of devtools
from CRAN or did you install it from commit 00bc51e from GitHub?). Sharing
the environment you used for your analysis can then be as simple as distributing
the .lock file along with your code so that any user can install the exact same
dependencies you used.

2.3 Simplify code execution
If your analysis spans more than one script you will want to have a tool that
helps you declare:

1. the order in which scripts are supposed to be run,
2. the input that each script expects, and
3. the output that each output produces

By describing the steps that go from the raw data to the deliverable as a
concatenation of inputs and outputs connected by different scripts, tools like
make or drake help you ensure that user that repeat the exact same process that
you used. Do you first need to run script A and then script B before the input
that C uses is ready?

As an additional advantage, because pipeline managers know whether the input
to a script has changed, they can save time by deciding if something needs to
be re-run or not. If the input to script B has not changed and C only uses that
output from B then there is no need to execute B or C again. This behavior is
exceptionally useful whenever the code in B takes a very long time to execute.

2.4 Declare your infrastructure as code
Sometimes a project will depend on a specific version of R. Perhaps the same code
will produce different results in a different version of R because the behavior of
some function has changed. Or maybe it will not work because some dependencies
are only available for a particular version of R. In those cases, it is helpful to
have an isolated environment in which you can install and configure the specific
version of R that you need and ship to the user. Using Docker is a good idea if
you need guarantee the portability of the analysis so that the user can stand
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up the same computational environment that you used—all the way down to
the operating system. More importantly, you can declare the computational
environment as code so that replicating it does not need detailed instructions
for a human to execute.

The rocker team generously provides access to a repository of Dockerfiles to build
images using different versions of R and, even more helpful, different standard
configurations of R so that you do not need to install all the dependencies that
are required for the tidyverse or LATEX/pandoc to work.

3 Conclusions
In this document, we have tried to make the case that reproducibility is an
evolving, collaborative enterprise between the members of the research community
at large. The recommendations we have made in the previous pages take the
view that reproducibility is largely a combination of automation (to reduce the
number of manual tasks that are required to execute the code correctly) and
thoughtfulness (to ease the burden that is required from users to understand what
the code does). In that regard, reproducibility in the context of statistics and
data science can take advantadge of the practices that are common in software
engineering even if we need to understand that, in our role as professionals in
the collection, analysis, and interpretation of data, we face distinct challenges
due to the nature of the artifacts we interact with (i.e., data), the type of output
we produce (i.e., estimates), and our own technical background and priorities.
In that regard, we think it is important to adopt a perspective in which good
tools that favor computational reproducibility complement good practices and
processes that make research more transparent and, consequently, more accessible
to other people.
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